Final - Optimization (2023-24) Time: 3 hours.

Attempt all questions. The total marks is 50.

1. Let $f : \mathbf{R}^n \to \mathbf{R}$ be convex and differentiable. Show that \mathbf{x}^* solves

$$\min_{\mathbf{x}\in\mathbf{R}^n}f(\mathbf{x})$$

if and only if $\nabla f(\mathbf{x}^*) = \mathbf{0}$. [6 marks]

2. Consider the constrained optimization problem

$$\min_{\mathbf{x}\in\mathbf{R}^n} f(\mathbf{x}) \qquad \text{subject to } g_m(\mathbf{x}) \le 0, \quad m = 1, 2, \cdots, M, \tag{0.1}$$

where $f, g_1, \dots, g_m : \mathbf{R}^n \to \mathbf{R}$. Corresponding to the above problem, for each choice of real numbers $\lambda_1, \dots, \lambda_M$, is an unconstrained problem

$$\min_{\mathbf{x}\in\mathbf{R}^n}\left[f(\mathbf{x})+\sum_{m=1}^M\lambda_m g_m(\mathbf{x}).\right]$$

- (a) Write down the dual problem. [2 marks]
- (b) Let λ^* be the solution of the dual problem, and \mathbf{x}^* be the solution of the primal problem (0.1). Show that if strong duality holds, then λ^* is exactly what is needed to make \mathbf{x}^* the solution to the unconstrained problem. [6 marks]
- 3. Let $f : \mathbf{R}^n \to \mathbf{R}$. Recall that a *subgradient* of f at \mathbf{x} is a vector \mathbf{g} such that

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{y} - \mathbf{x}, \mathbf{g} \rangle, \quad \text{for all } \mathbf{y} \in \mathbf{R}^n.$$

- (a) Show that if f is convex then there is at least one subgradient of f. [7 marks]
- (b) Show that a subgradient may not exist if f is not convex. [3 marks]
- 4. Consider a convex three times continuously differentiable function $f : \mathbf{R} \to \mathbf{R}$. Let ξ be the global minimizer of f. Let $\delta > 0$ and $I_{\delta} = [\xi \delta, \xi + \delta]$. Assume further that $f'''(\xi) \neq 0$, and there exists A > 0 such that

$$\frac{|f'''(x)|}{|f''(y)|} \le A \quad \text{ for all } x, y \in I_{\delta}.$$

Consider the sequence

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

with $|x_0 - \xi| \leq \min(\delta, \frac{1}{A})$. Show that

$$\lim_{k \to \infty} \frac{|x_{k+1} - \xi|}{|x_k - \xi|^2} = \mu,$$

for some $\mu \in (0, \frac{A}{2}]$. [8 marks]

- 5. Consider the standard form polyhedron $\{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}\}$, where **b** is an $m \times 1$ vector, and assume that the *m* rows of the matrix $\mathbf{A}_{m \times n}$ are linearly independent.
 - (a) Suppose that two different bases lead to the same basic solution. Show that the basic solution is degenerate. [3 marks]
 - (b) Consider a degenerate basic solution. Is it true that it corresponds to two or more distinct bases? Prove or give a counterexample. [3 marks]

6. While solving a standard form problem, we arrive at the following tableau, with x_3, x_4 , and x_5 being the basic variables:

	x_1	x_2	x_3	x_4	x_5
-10	δ	-2	0	0	0
4	-1	η	1	0	0
1	α	-4	0	1	0
β	γ	3	0	0	1

The entries α , β , γ , δ , η in the tableau are unknown parameters. For each one of the following statements, find parameter values that will make the statement true.

- (a) The current solution is optimal. [4 marks]
- (b) The current solution is feasible but not optimal. [3 marks]
- 7. The convex hull $\operatorname{conv}(X)$ of a set $X \subset \mathbf{R}^n$ is the intersection of all convex sets containing X.
 - (a) Show that conv(X) is convex. [2 marks]
 - (b) Show that conv(X) need not be closed. [3 marks]